Maximization of Submodular Set Functions
نویسندگان
چکیده
In this technical report, we aim to give a simple yet detailed analysis of several various submodular maximization algorithms. We start from analyzing the classical greedy algorithm, firstly discussed by Nemhauser et al. (1978), that guarantees a tight bound for constrained maximization of monotonically submodular set functions. We then continue by discussing two randomized algorithms proposed recently by Buchbinder et. al, for constrained and non-constrained maximization of nonnegative submodular functions that are not necessarily monotone.
منابع مشابه
Submodular Function Minimization and Maximization in Discrete Convex Analysis
This paper sheds a new light on submodular function minimization and maximization from the viewpoint of discrete convex analysis. L-convex functions and M-concave functions constitute subclasses of submodular functions on an integer interval. Whereas L-convex functions can be minimized efficiently on the basis of submodular (set) function minimization algorithms, M-concave functions are identif...
متن کاملProbabilistic Submodular Maximization in Sub-Linear Time
In this paper, we consider optimizing submodular functions that are drawn from some unknown distribution. This setting arises, e.g., in recommender systems, where the utility of a subset of items may depend on a user-specific submodular utility function. In modern applications, the ground set of items is often so large that even the widely used (lazy) greedy algorithm is not efficient enough. A...
متن کاملConstrained Robust Submodular Optimization
In this paper, we consider the problem of constrained maximization of the minimum of a set of submodular functions, in which the goal is to find solutions that are robust to worst-case values of the objective functions. Unfortunately, this problem is both non-submodular and inapproximable. In the case where the submodular functions are monotone, an approximate solution can be found by relaxing ...
متن کاملInfluence Maximization with ε-Almost Submodular Threshold Functions
Influence maximization is the problem of selecting k nodes in a social network to maximize their influence spread. The problem has been extensively studied but most works focus on the submodular influence diffusion models. In this paper, motivated by empirical evidences, we explore influence maximization in the nonsubmodular regime. In particular, we study the general threshold model in which a...
متن کاملSome Results about the Contractions and the Pendant Pairs of a Submodular System
Submodularity is an important property of set functions with deep theoretical results and various applications. Submodular systems appear in many applicable area, for example machine learning, economics, computer vision, social science, game theory and combinatorial optimization. Nowadays submodular functions optimization has been attracted by many researchers. Pendant pairs of a symmetric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015